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Syllabus

e Heavy ion collision phenomenology and lattice results.

e Bulk properties of strongly coupled plasma from the gauge/string
duality I: introduction, thermodynamics, and mass and charge

transport properties.

e Bulk properties of strongly coupled plasma from the gauge/string
duality Il: parton energy loss, jet quenching parameter, string
theory corrections. Adding flavour. Thermalisation. Hadronisation

and Jets. Outlook.



Relativistic Heavy lon Collider: RHIC
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* heavy ion program at Large Hadron Collider will explore
Pb-Pb collisions at ~5 TeV/nucleon for one month/year




The QCD Phase Diagram
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The RHIC (last few years) & LHC
(2010-2011) results

Deconfined quark-gluon plasma (QGP) is produced from heavy ion
collisions.

Data suggest it corresponds to a strongly coupled regime of QCD.
Plasma behaves like an ideal fluid.

Excellent environment to apply the gauge/string duality at full
extent: supergravity -+ string corrections.



A view of the Au-Au collitions at RHIC - simulation

Time arrow

Approach: collisions  Thermalization: Expansion: Hadronization:
of two Au nuclei, which  Part of the kinetic Quark-gluon  Expansion and
look flattened by energy converted to plasma exhibits  cooling, then

relativistic effects.  intense heat, quarks collective flow matter
E~100 GeV/nucleon and gluons described by converted to
deconfine. hydrodynamics hadrons

Timescale ~ 2 x1022  (Elliptic flow)
seconds



How many particles are produced in a typical

heavy ion collision? s

Define pseudorapidity: n = — log(tan(6/2)) /Z x

s = p% + p% \_\/_/I

The top energy achieved at RHIC is /s = 200 GeV per nucleon
at the center of mass.

GeV
197A L = 197 X 200 wieV ~ 40 TeV.

GeV
Integrating under the curve for 200 MeV it gives 5060 4 250
charged particles. If consider pions 7~ but also 7" = a factor 3/2
appears = 8000 particles at RHIC inthe final state!

Multiplicity grows with energy and curves are centered around
n=0=60=m/2



s-channel
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We will discuss about:

e Elliptic flow = how soon after the collision matter moving
collectively form and constrains the value of the shear viscosity.

e Jet quenching: how this matter affects and it is affected by a
high-velocity coloured particle plowing through it.

e Suppression of quarkonium production: characterizes temperature
and screen between coloured particles.

The reason to do heavy ion collisions is to create as large a volume as
possible of matter at high energy density # of p + p collisions.




Elliptic flow: phenomenology

Suppose the impact parameter comparable to the nucleus radius.
Collision of 2 pancakes (due to relativistic Lorentz contraction).
Almond shape region of collision.

Nucleons outside the almond DON'T collide and are on the beam
pipe.

Now, if the few hundred particles produced by these nucleon-

nucleon collisions came from independent nucleons (like p+p)

by the central limit theorem they would have been uniformly
distributed with ¢.

Otherwise, if the came from nucleons in the same nucleus =
non-uniform distribution. And data shows this!



Elliptic flow: phenomenology

Collisions within the almond shape re-scatter = reach local
equilibrium.

This behaves like a kind of fluid = it determines the shape of the
azimutal distribution after the collision occurs.

This flow is ELLIPTIC: longer direction transversal to the beam
direction.

Evolution as a drop with no external pressure and high internal
pressure.

The hydrodynamical model works well if 17/s is very small.

This is an indication about the existence of a strongly coupled

fluid!



Elliptic flow: phenomenology \

1 fm after the collision = there is a hydrodynamical behaviuor
characterized by thermodynamical equilibrium.

The energy density is well above the one of the hadron-QGP
Crossover.

This justifies the claim that heavy ion collisions produce QGP.
Then the QGP is STRONGLY COUPLED, low 7/ s.

pQFT fails to describe this system.

Gauge/string duality does a better job. More about this later.



Elliptic flow: phenomenology
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Elliptic flow: phenomenology
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Elliptic flow: phenomenology

|deal hydrodynamics: all gradient terms are neglected

oI = 0, u, THY = —cu”
a,Js = 0.
nlp
T =Tt 1 TR = (e 1 Pyt + Py

First order dissipative fluid dynamics

[I* = —p(g)at” — ((e)AM' V - u, VH = Arvd,

AR = g"" + utu” |

: 2
ot = APYAYE (T g + Vgugy) — 5.-“}.,_75 V-u

Second order dissipative fluid dynamics

m DI = —11*" — pat'”,



Jet quenching: phenomenology

What happens to a (hard) parton (quark or gluon) with momentum
>> I" plough in the plasma.

Recall this is an internal probe, produced by the collision itself

(different from say DIS).
The (hard) parton losses energy.
Strongly coupled fluid response to this parton.

Change in the direction of momentum: transverse momentum
broadening.

Transverse here means perpendicular to the momentum of this
hard parton (not to the beam).



Jet quenching: phenomenology
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Quarkonia in hot matter

It is an operational way to think of the QGP deconfinement.
What prevents the formation of a meson within QGP?

Answer: screening due to the presence of QGP between the quark
and the anti-quark.

Then, it suggests the question: how close together do the quark
and anti-quark to be in order for their attraction not to be
screened?

Similarly: how close together do the quark and anti-quark to be in
order for them to feel the same attraction they would feel if they
were in vacuum?

In 1986 Matsui and Satz suggested quarkonia should be a good test
as they are significantly suppressed compared with other lighter

mesons or bar ons. —
y Q0

J/W, ¥’ x. mesons, etc. from charmonium.

Y. Y’ mesons, etc. from bottomonium.

There are lattice calculations about this.




Lattice QCD: some results

G (t, x) —iO(t) < [T™Y(t,2)T*(0,0)] >
Ghl(t,x) = —iO(t) < [J(t,x)J(0,0)] >

J is the conserved current associated to baryon number, strangeness
or electric charge in QCD; of R-symmetry in SYM.

Then, via Green-Kubo relations (more later) we have:

Ty, Ty _
y = — lim ImGy" " (w,k =0)
w—0 W

ImG7 (w, k=0
oc=Dyx = —lim mGy (@, )

w—0 W




Lattice QCD: some results for 77/s

n/s = 0.134(33) for 1" = 1.651,. H. Meyer 2006
n/s = 0.102(56) for 1" = 1.24I. H. Meyer 2006

From AdS/CFT: Kovtun, Son, Starinets bound (2002) n/s =
1/4m ~ 0.08

Results on electrical conductivity to be discussed in the third
lecture.



Motivation |: DIS

The DIS amplitudes for electron-hadron scattering can be
extracted from the matrix element of two electromagnetic currents
inside the hadron, which defines the hadronic tensor:

1’1[’?,111; =1 / {54'3} e'iQ’B" < P: Q| [Jﬁmu")! inm([])] |P" Q >




Motivation |l: DIS off strongly coupled
plasmas

Probing the plasma at momenta/energy >> T', with T > T,
we are looking at the DIS regime.

Take N/ = 4 SYM theory at finite T. DIS corresponds to scattering
off thermal excitations in the plasma.

The holographic dual is a Schwarzschild-AdS5 b.h. times S°.

This metric gets corrections a3

We calculated their effects on "thermal structure functions” and
find enhancement.



Motivation lll: QGP Hydrodynamics:
E <T

The transport coefficients.

e Mass transport: shear viscosity and diffusion constant.

e Charge transport: conductivity and charge diffusion.



Motivation IV: Plasma photo-production

e Plasma in thermal equilibrium, but optically thin.

e Photons are emitted from the plasma, which does not include
prompt photons produced by the initial scattering of partons from
the colliding nuclei.

e [ he electromagnetic coupling constant, e, is consider small enough
to ensure photons are not to be re-scattered and consequently do

not thermalise.




AdS/CFT: The Idea

10 D bulk
String Theory

4 D boundary
QFT

O(x)



The Euclidean generating functional of the connected Green's
functions:

Z[J] =< 0|T{e%fd4ﬁ?:me%ffd‘laffﬁ(x”)J(m”)}m >
For n-point QF T correlators we have

<OIT{(1) -+ G (@i)}0 >=
(—1)“&-5?1- < eXp(— f (E)(mﬁ)'_](mﬁ)) >
(—1)" 5" Z[J]

|J—}O




QCD: N=4 SYM:

Nc=3=Nf,Matter in the fundamental Nc large, Matter in the adjoint
representation, Confinement, Representation, Deconfined
Chiral symmetry breaking, Conformal,

Discrete spectrum ... Supersymmetric...

At T=0 they are very different theories

QCD: N=4 SYM: Strongly coupled

Strongly coupled gluons and gluons and adjoint (and
fundamental matter, fundamental) matter,

Deconfined, screening, finite Deconfined, screening, finite

Correlation lengths. Correlation lenths.

QCD: N=4 SYM:

Runs to weak coupling, leading Coupling remains strong:

to a free gas of quarks and gluons. strongly coupled plasma.

At T>>Tc they are very different theories



Yang-Mills theories: Non-Abelian gauge
symmetry group SU(N)
A, = U(x)AUN () 4+ (0,U(2))UT (2)
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The large N expansion of YM theories
Consider a general theory with some field @ in the adjoint of
SU(N):
L ~ Tr(d®d®) + gymc’ Tr(®;®;®1) +
g}% M dij HT-r ( P, P "I);; (I)E)
Lvy Ti‘(dA @A )—I—gyuTT‘(d 4 A AS )—I—
QIYM'TT(‘AM‘AJGAJ‘AH)

Now let us re-scale the fields: &; — fi)i = gymP;

= gy M 1}}5,
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Thus, a diagram with

V: vertices (dots)

E: propagators (edges)

F: loops (faces)

in a simplicial decompositions comes proportional to

iNrV—E—I—F)\E—V _ j\TX}\E_V

x =V — FE + F = 2 — 2¢g the Euler characteristic of the
surface. g is the genus (number of handles of the surface)
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For any diagram there is a perturbative expansion of the form:

i N*7% f: i)' = i N7 f,(N)
g=0

g=0 i=0

the surfaces which dominate the expansion are those with minimum
genus or maximum Euler characteristic, thus planar diagrams in the
large IV, the rest will be suppressed by 1/N2.

This expansion is the same one finds in a perturbative theory with
closed oriented strings, identifying the string coupling gs with 1/N .

This is one of the strongest motivations to believe that in the

large N limit gauge theory and string theory are dual. This is not a
proof obviously.



String theory side.

The dynamics of the strings is described by the Nambu-Goto and
the Polyakov actions (the Polyakov's one is)

It is effectively the action of a QFT in 2D with 24 or 8 scalar
massless fields. In the supersymmetric string theory we have to add
the fermions, and the critical dimension is 10.

The equation of motion is a wave equation for a free string
oscillating in 24 or 8 perpendicular directions:

92X, — 92X, =0

The theory is conformal.



The quatum theory is obtained in Euclidean space with the
Feynman path integral formalism on the Polyakov action

Z = /[dT] dg|/V exp —S

where V is the volume of the groups of Weyl and diffeomorphism
invariance and the Euclidean action is

S = SPDIyaﬁcov + X

Thus the contribution coming from each Riemann surface is weighted
by

(1/g5)* 727"

Thus identifying N. = N = 1/gs one gets the same weight factor
as the SU(N,.) gauge theory!

This is crucial for the gauge/string duality.



Comment: Very hard to think a pure fermionic theory satisfying
this condition! = why would it to work for AdS/CMT7?? No answer
by now.

Homework try for instance with a four fermion interaction like
Fermi int. It does not work.



QCD, glue and superglue
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e UV asymptotic freedom.

¢ IR color confinement at strong coupling.



e Large N, QFT's: A = g;f,ﬂ_fj\?’e — fixed — only planar graphs
contribute!

ldea: SU(3,) — SU(N,) and for large N, the dynamics is
controlled by the 1 /N, expansion.

Consider quark-antiquark system: the separation energy
F = o L indicates quark confinement!

Removing the fundamental quarks leads to closed flux tubes: the
glueballs.

Glueball has not dynamical quarks — gluodynamics.

The large N, limit is good for studying confinement.
e Numerics: Lattice QCD

Quenched approximation: very heavy quarks.



Pure =1 SYM 4d (supergluodynamics)
ﬁaupe*r’giue — _% tr FQ + A (_i'}ﬁDﬂ) A

A = gauginos.

(Can be straightforwardly extended to SQCD)



The field theory side

The N' = 4 SYM Lagrangian (an overall trace is taken)

1 Oy
L = F?JAFJHU’G T 5 5 FTUFJL”AQ
227 Sm2 /

— > iAGH DA — Z D, X'DHX'

+ ) gCPN[XT N+ > g CiapAe[ XN

a.,b,z a,b.i

92 Z [‘Xr ? ﬁ JX'j} 2

]

N =4 Gauge multiplet (Aij, A, X;), with the left Weyl
fermions, X" are 6 real scalars.



Dynamical phases:

Coulomb phase: < X' ># 0 for at least one .
4 x4 x1 =16 supercharges.

Superconformal phase: < X' >= 0 for all .
4 x 4 x 2 = 32 supercharges.



We shall consider the Superconformal Phase of the
theory. It has the following symmetries:

e Conformal symmetry: SO(2,4) ~ SU(2, 3); generators
Pt L,,; D, K"

o R-symmetry: SO(6)p ~ SU(4)p; generators 1"
A=1---,15=4>—1.

o Poincare supersymmetries: ()% . (Z)da, a=1.---.4;
16 generators.

o Conformal supersymmetries: S,,., S%, a=1.---4;
16 generators.



Introduction to the AdS/CFT correspondence:
The Supergravity side

Consider |IB supergravity, a D3-brane in Minkowski 10d=0123456789

0123




A D3-brane picture

For N coincident D3 branes the induced background metric is

ds® = fTYP(r)da® + 1) (dr” 4 r2dO2)
. L*
f(r) = (1 - —4)
.
L' = 4ng.N()? o =1

which is a solution of type |IB supergravity.

»

'F'Ef[?') 1/2

Regimes

e 1 >> [, — 10d Minkowski

e r < [L — 10d throat

o r << L — AdS: x §° ﬁ




2
After changing variables r — z = L?— and taking the decoupling

limit
. * L?
lim z = lim — = const

a’—0, r—0 al—0, r—0 7

-5

the metric becomes AdSy x S

L?
= — Az’ 4 dz° 4 ,?.'2(35_3?)

-
ot

2
ds

Ad S5 has a boundary which is 4d Minkowski spacetime.



The o/ — 0 limit, g, and N fixed

What happens in this limit?

e Firstly: the limit exists in string theory!

e Only the AdSs; x S” of the D3-brane system geometry survives
and contribute to the dynamics.

e The asymptotically flat region decouples from the theory!



The decoupling limit o/ — 0
Inserting the full D3-brane metric scaled as

Gun(x) = L-QEMN(;P; L) into the non-linear sigma model

o ML . M . N
b T — ) ; ﬁ ’-} (:T ﬂ_{ A-‘\.' C)?n a C)n £
Adra’ Jv

L?

: mn o= . M . N
4: ! f ’\/?f} C; MN C)']"?I h C)ﬂ' T -
7T ¥ 3

Thus

L_Q

4y’

A .
4Tr )\ f— QSJ?\'I

If we keep g and N fixed but take o' — 0 and L? — 0 then the
scaled metric reduces to AdSs x S° and the sigma model becomes

A

A mn—= M N
S, = \/ vVYYy  Gun(x; L — 0)0nx Opx
mwJxY

Thus 1/+/X has taken the role of o',



The AdS/CFT conjecture

The large N limit of SU(N) N' = 4 SYM theory (superconformal
phase) in d=4 is dual to type IIB supergravity on AdSs x S°, with
N units of Fy flux through S® and constant dilaton .

b

ldentification: ¢~ = g, = gi-as.



The 't Hooft limit

Mittooft = Gy N = gsN = A

with N — oo

A fixed

therefore gy s, the QFT is perturbative!



The large )\ limit

o If A >> 1 the QFT is non-perturbative!

e |n this region supergravity is a good description.



Identifications |

g = g)sz

L'=4n Nga'= 4n Ng, 0 = 4nha’

lim, , curvature S1/L - 0 Small curvature

lim, , 1 - o Large t"Hooft coupling= strongly coupled QFT

So, we have a powerful tool to calculate QFT properties at strong coupling!
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Identifications |l

e Mapping global bosonic symmetries: N = 4 SC-phase
has SU(2.2]4) as a continous global symmetry.

e Its maximal subgroup is SU(2,2) x SU(4)r =~
SU(2.4) x SO(6), which are the isometries of AdSs
and S°, respectively.

e Finally mapping the KK states of type |IB sugra on
AdS5 x S° and CFT operators.



|Identifications lll: calculations of correlators

Mapping SYM and AdS correlators

The ansatz of the precise relation of CFT on the boundary to AdS space
is that the QFT generating functional is

Zopr|do] =< exp( dz*O(z")do(2")) >cpp= e 'SUGRA
bound

where op(x") = lim. _go(x". z) boundary values of the bulk fields, and
O(xt) are 4d CFT operators. For n-point CFT correlators we have

< 0|T(£’?{x-‘1*) - Oii‘ﬁi)llﬂ >=
0" < exp(fﬁmmdﬂ-ry L}'}(Iﬁ}ﬁﬁﬂ(?ﬁ!)) >OFT B
5¢0(2}) - - - 8o (zh) |go(ar)—0 =
0" Z s|¢po(z")] y
6{?_‘)@{;'[,";!) .. 6@0(;1.#; o (xt )—0




Important point:

Notice that: ¢” = g, = ¢;-,, is a constant in a CFT
— @ = constant — AdS is FIXED POINT in a sense that
will be clarified now.



AdS/CFT: The Idea

10 D bulk
String Theory

4 D boundary
QFT

O(x)



UV/IR connection

2 2 PR
dsjop = dsAdSS + R7dS;
2 2
2 = ] . &
dS;—’lngg e RQ n,uydﬁ/ de + -?’“2 d?"

r from O to infinity, Poincare patch of a global AdS spacetime. Now
using z = R*/r

.. B )
dsicf.5'5 — ?(nwdw“’dm’ + dz?)
§ = 2 E—2F
= e = phvm

z = 0 AdS boundary. z — oo Poincare horizon.
UV Ey i — oo corresponds to z — 0 (AdS boundary).

IR Eyar — O corresponds to 2 — oo (AdS horizon).



Finite T
o NN =4SYMforT =0 < AdS; x S” in type |IB string theory.

o N = 4SYMforT >0 < AdS- Schwarzschild BH xS° in
type |IB string theory.

o |t describes glueball-to-gluon deconfinement: Glueball Plasma



Finite T gauge theories

Flavours using brane probes. Small number of D7-branes probing
AdSs x S°: Chiral symmetry breaking, 4d completion at UV.

glueball deconfinement < T < meson melting

Meson spectra at finite T from fluctuations of the D7-brane.

Critical embedding: T = meson melting

Vector meson melting, using the black hole embedding.

Studies of strongly coupled QGP.

2
1.75 Minkowski embedding

T r Fr & ¥ & K B _E_R_B_JB __J N & K __E __J _J]

1.5
Critical embedding

1.25 '_--——-—--——------—---

meson melting = strongly coupled QGP

Black hole embedding




Green-Kubo formula for transport coefficients

Let us consider the system in the rest frame u" = (1,0).
Deviations from the equilibrium are studied by introducing a small
perturbation (as an external source)

1 .
S = So+3 / d*zT" h,,
To the leading order:

v v 1 : v, of
< TH (x) >=< T" (x) >0 —§/d4$GE Pl — y)has(y)
G (2 —y) = 60" —y") < [1"(2), T (y)] >

to extract the shear viscosity we concentrate on an external
perturbation:

< T:I?’y(w: k’) >—= _Gg%'ﬂ?y(w: k)h,xy(w: k)
dw

< T:ry = (t: ,Z) _ Ee—ithgy,;lry(w: k — O)hf-.ry(w: Z)

having considered the long wavelength limit.



Green-Kubo formula for transport coefficients

This long wavelength expression may be compared to the
hydrodynamic approximation by studying the reaction of the system
to a source in the effective theory, which can be interpreted as a
fluctuation of the metric:

Guv = Guv + b

To the leading order in perturbation theory the shear tensor is defined
in terms of the Christoffel symbols:

0 :
a Y — 2Fil’j§,‘ — (9“ h"ll"y

1 _—
n = —lim —lim ImG3""(w, k)
w—0 (v k—0 '
which is the Kubo-Green formula for the shear viscosity. This can
be generalised to other currents just by replacing 1" by any current
operator.



Absortion of scalars by black 3-branes and the
shear viscosity

Consider a black 3-brane in type |IB supergravity. We want to
study what happens to a graviton polarized in the directions (x, y)
which are parallel to the brane. The absortion cross-section reads:

o(w) = / t [ e < (L) T,,(0)] >

where k°> = 87 Gy. Now, by comparison with the Green-Kubo
formula we obtain:

1
— ——0o (0
n=5-50(0)



Absortion of scalars by black 3-branes and the
shear viscosity

Let us see how to get the absortion cross-section of gravitons
by black 3-branes. The metric fluctuation h,, = ¢ is an scalar
fluctuation. The metric of N black 3-branes is

ds® = H Y*(r)(=f(r)dt* + d7%)

+H2(r)(f 7 (r)dr® + r2d?)
R4 4

Hir)y=1+4— f(r)=1--2
rd rd

o
T —
T R?

The EOM for the fluctuation is 9,,(v/—gg""9,¢) = 0. Using the
Ansatz: ¢ = e'“'¢(r) the EOM becomes

gl')” 4 5?”4(?” - T’O)(ﬁf + w2'r4('r4 + R4)¢ —0

r(rd — T’o) (r+ — ?"0)2

since w — 0 then we consider w << T'. To solve the EOM there
are 3 regions. Finally one gets: o0 = 7° R2




The Bekenstein-Hawing area law

A

s = =
4G

o p— ikBCB
4G h

The area of the even horizon of the 10d BH can be obtained from:

ds* = H 'Y?dz*) + HY*rldQ?
R R!
Ve = /\/gd% = WSRQ?"SV_?,

Therefore we can define ay = Vg/ V3 = 7T3R2?"8 thus the entropy
per unit volume is s = S/ V3 = (V5/V3)1/(4G) = 7° R*r;. Recall
that 0(0) = 7 R*r3, and = 1/(167G)a(0), then

1 4G 1 : 4G 1
- 7(0)—— = 7 R — _— ~0.08
S 167G T3 R2ry 167G T R2ry  Am

Recall lattice results: for T" = 1.247T.7n/s = 0.102(56), H. Meyer.



Finite 't Hooft coupling and /N corrections to

n/s

1 15¢(3) 5 A2 15 N
n_ 14 C(()_'__ 4 o~ ST N/
s A4m A3/2 16 N2 = 2wl/2N3/2

for A\ = 67 which corresponds to s = gi,,/(4m) = 0.5 and
N = 3, this gives 0.08 to be corrected to 0.11 (lattice was 0.102(56)).

Corrections from the first term are 22%, then 15% and the third
1077,



Parton energy loss via a drag on heavy quarks

; 1 2
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The RHIC (last few years) & LHC
(2010-2011) results

Deconfined quark-gluon plasma (QGP) is produced from heavy ion
collisions.

Data suggest it corresponds to a strongly coupled regime of QCD.
Plasma behaves like an ideal fluid.

Excellent environment to apply the gauge/string duality at full
extent: supergravity -+ string corrections.



Results DIS g>>T

Fr = 2rgFy, where 25 = Q?/(2wT)

5 _ 3 i-ﬁ,'r.'ﬂ -1{"2 q 2/3
Fy~(1+=£(3 A—Bfﬂ) — ( )
! ( +8"’( ) 1617°2(1/3) \6xT

FL = Fg — QIEFl



Motivation lll: QGP Hydrodynamics:
E <T

The transport coefficients.

e Mass transport: shear viscosity and diffusion constant.

e Charge transport: conductivity and charge diffusion.



Plasma conductivity large /N and large A\

E‘Q

ooap = 1&111 %T;“Ij/ d*z e_iq'm@(a:g) < | Ju(z), J,(0)] > |7=0



Motivation IV: Plasma photo-production

e Plasma in thermal equilibrium, but optically thin.

e Photons are emitted from the plasma, which does not include
prompt photons produced by the initial scattering of partons from
the colliding nuclei.

e [ he electromagnetic coupling constant, e, is consider small enough
to ensure photons are not to be re-scattered and consequently do

not thermalise.




The Wightman function of electromagnetic currents is defined as

O (K) = / 44X X < O 0) S (X) >
In thermal equilibrium is related to the spectral density

C;; (K) = ”b(kﬂ) Xpuv (K)

0
Bose-Einstein distribution function ny(k"”) = 1/(@‘% —1).



The spectral density is given by the imaginary part of the retarded
current-current correlation function

Xuw(K) = —2Im Cﬂﬁit (K)

The number of photons which are produced per unit time per unit
volume is denoted by I'. At leading order in e the photoemission
rate is given by

2 3
e d’k
dly = —5 """ C, (K
g 2(R| ,u;( )|k0_|k| (27)3

This formula for the photoemission rate holds to leading order in the

electromagnetic coupling e, but it is valid non-perturbatively in all
other interactions, 7.e. strong interaction.
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For very large A the photoemission rate is given by

dr,, _ aemN?T? (k/T)?
dk 1672 eR/T 1
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Perturbatively:

dl N —1
v _ )Ctemknf(k)mi [In(T/moo) + Ciot(k/T)]

dk 472
*mgo = \T?
1 &
Ciot (k/T) =~ In(2k/T)

_I_C?H‘E(k‘/T) .y C’Tbrmn(k/T) + Cpair(k/T)
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Bremsstrahl g-_

Inelastic Pair Anmbhilation



€4k ce D01 0% — 0158 ~ 0618 =

Chrem(k/T) + Cpair(k/T) -

0.954 (T /k)*/? 1n(2.36 + T/k) + 0.069 + 0.0289 k /T,
which hold in the range 0.2 < k/T" < 20.
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Important conceptual and technical
developments

The AdS/CFT conjecture

The large N limit of SU(N) A/ = 4 SYM theory (superconformal
phase) in d=4 is dual to type IIB supergravity on AdSs x S°, with
N units of F% flux through S® and constant dilaton ¢.

&

|dentification: e ¥ = g, = gffM.



What about the QFT?

The N/ = 4 SYM Lagrangian (an overall trace is taken)

1 Or
r _ T F{I F,u,ya 4+ F& F,u,poa

2(; [T {2 M

— Z i DA — Z D, X'D'X’

+37 g CPNIX M) + 3 g Ciphe[ XA

a,b.i a.b.i

2
g i 712
— X' X/
y 2 XX

The C’s are related to the Clifford Dirac matrices for SO(6)r ~
SU(4)r.

N = 4 Gauge multiplet (Aiﬁ_}‘,Xf_), with the left Weyl

fermions, X" are 6 real scalars.



Finite temperature description

The AdSs-Schwarzschild black hole x S”

- (10)21( fu)dt® +d7*) + L” g2 4 12402
ds” = —| —(—f(u)dt 1T du “dS;
u () { du?f(u) e

where f(u) = 1 — u?® and the b.h. temperature: 7o = 771 L.

So, the conjecture it that a deconfined QGP is described by this
supergravity solution.



The type |IB supergravity action

2
- (F5)

1 -
Slg — / {EIU;E \/—(_;
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Leading string theory corrections

o L* 10 » _3d s
Sty = —5 | d"z/ =G [q.-e W, + - - -
2K,

v = L1£(3) (o /L7)?
L4 — 4'3-{-93;\;’(_1!2
Setting A\ = gy N = 4mg. N

v =580) 5



The W, term is a dimension-eight operator, and is given by

ir _ ~hmnk TS8P ~( 1 hkmn TS8P ~q
Wy=0C CP?””Q’ Ch Crsk T E C C}”i‘m'” Ch Crsh s

Y . is the Weyl tensor.

Dots denote extra corrections containing contractions of Ff,
schematically:

V(CT + C°T> +CT* +TY)



General compact 5d Einstein manifolds

Ra, = R/d gap
Includes:

Sasakian manifold M is one with the Riemannian cone Kahler. If
the cone is Ricci-flat, M is called Sasaki-Einstein, in 5d L,, , ..

Examples include all round odd-dimensional spheres, and the
product of a 2-sphere and a 3-sphere with a homogeneous metric.
The cones are respectively complex vector spaces without the
origin, and the conifold 7%, Klebanov-Witten dual.

Some circle bundles over the 3rd through 8th del Pezzo surfaces.

Y P4 quiver theories.



K(u)
R(u)

a(u)

b(u)

c(u)

General case

(}‘i’) Qi (—f(u) K2(u) dt® + d;fz)

L’ 2 2 2 2 2
—I—m P (u)du” + LR (uw) dM;
exp [y (a(u) + 4b(w))],  P(u) = exp [y b(u)]

exp [y e(u)]

1625 4 10005 4

— u- — 175w + U
8 16

325 o 1075 , 4835 4

—u- + u- — U

8 32 32
15 7T R?

:) (1+ ug) u? : with ro = S5
32 (1 +567)



The simplest example My = S°

T T

ds = gmndx dx

3 .
2
+L°R(u)® ) ld,uf + 12 (dei + TA,udxﬂ )9]

i=1 3
Fy = Gs+ xGs
4 RL(u)® [N
Gs = ——¢s i A ddi | AFF

where F5 = dA is the Abelian field strength and

—

N?

v 4 ST mp ng
S = YR / d x du \/ gR (v) g " g Fmn Fpg




Operator enumeration for the general case

AdSs Schwarzschild black hole with and Einstein manifold. The
ten-dimensional corrections containing the five-form field strength are

schematically

okt BN o N ol T

1
o R -+ T —+ + mn -+ + mn
Il-b@-def - I'vﬂ-Fbcdef -+ 16 (P‘a.bcmanef o Fa.bf-mn dee )

Fr o= La4en
= <) Fs

The self-duality constraint

W4

W
Fy — 120’“; = x (F'S _ 1201 5 R.“l)

5 5



(CPT + C*T? 4 COT?)|sq =

01 Caed PV FL VO FY ) 4 03 Copea OO  Fp, VY Fe9 4

CansCo™ [0yV ;Fif Y F. 4 VaFufV P19 4 bV aFy VU F7?) +

baClanCY  Fy VI L8
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The Lagrangian for the transverse modes

Inserting the perturbed metric and F’ into the 5d operators, the
minimal kinetic term vields the following Lagrangian for the transverse
mode A,

f\-‘TQ-?‘g d*k

Stotal - _16*?.'21?.4 (Qﬂ)ai

1
/ du h-—-AWA;:A_k—F
0
(B, + vBw)A, A",
—F’}-"(jf‘.{.?Aka_k + (Dl + "}"DII{.Y)A,I{_A_I{-_
+yEw AL A"+ yFw ALAL ]

where Fourier transform of the field A,

4
d k. i
e wi+i1qz Ak(u.) ‘

Ag(t, T, u) = (2m)i €
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0,

—hyf(u) + 2ho(—3 4+ u(Su — Tu® — 262 f(u) 4+ 22)) |
4hg(2 + u*)w?
flu)
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2(72ay — 4by + 8by — 209 + Beg — 0y + 20 — o7 + dy + dy)
2 (—Tgﬂ-l + -1-3?1 — ]_ng -+ Ei{?g + 3[*3 + g{‘4 — 2{?5 + g@; + 36!1 + St’fg — 2!1?13 + t’Lﬂl ;

"

% (2[11ey + 3(13eg + 24 + 5 — 2(3e7 + ¢5))] + 2(—2dy — 5dy + 9ds + 4dy)
—36(—6as — e1) + 8(16bs + 22by + f1) — 5g1 + 292 + ga)

i (576ag — 32by + 352bg + 480by 4 Gdey + 320 + 25609 + 80y + 1605 — 48¢c; — 3204
+8cd; — Bdy + 40dz + 32dy + 36e; +8f; — 51 + 22 + q3) .

i (—5T6ay + 504a, + 32b; — 128bs 4+ 320bg + 4324 + 620 4 80¢q + 238¢5 + 132¢y
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—% (36as + 2by + 1603 4+ 20by — 01 — 209 4+ 5eg — dey + 05 — 207 — 205 — dy +ds + dy)
—144ay + 36as + 8by — 28by + 24bg 4 32by + 5ey + 160 4+ 2363 4+ 240y + 05 — deg 4+ 160
—20g + Tdy + 6dy — 2ds + 4dy

—T2a9 — 4by — 48bg — 64by — 100y 4+ 45 — 1005 + 12604 — 205 + 28¢- + deg + Tdy + 9ds



~&

S8 S8 5%

SE g

—Tds + 2dy,

% (—108ay — 56bg — G4by 4+ ¢y — Jeq 4+ 2204 — 3o + 60s + Gog + 4dy — dy + dg)

—~ (—108ay — 56bq — Gdby 4+ 07 — 3eq + 2204 — 3cs + 602 + Gog + 4dy — dy + dy — 3664
—4f1 =391 — 202 — g3) .

% (—108a2 — 64bs — 104by — 11y — 19e9 + 106y — Tes 4+ 26607 + 14des + 8dy + Tda — Tds
—36ey —8f1+ 501 — 2092 — g3) ,

i (16h3 — 16by + 8cy + 1605 + 8eq — 8es — 8er + 1608 + 4dy — 4da + dds — 3661 — 8f1
+501 — 292 — g3)

i (—36a2 — 16bs — 40by — ¢y — c3 + 64 — Ses + 6oy + 1008 + 4dy + do — da) |
—2(72ay — 36ay — 4by + 4by — 8bg — 16by + 301 + 209 — deg — Tey — 05 + 206 + 05
4205 —dy —dy —dy).

2(—=72ay + 36ay + 4by — 12by + 24bg + 32by + 51 + 60 + 1203 + Toy + 05 — 205 — 5
—2c8 4+ di 4+ d3 + dy)

4(72a7 — 36ay — 4by + 8by — 16b3 — 24by — ¢y — 205 + deg + 5oy — o5 + 206 + 07 + 205
+dy +dy +dy)

2(—=T2ay + 36ay 4+ 4b; — 12by + 24bg + 32by + 5ey 4 6ep + 1203 + Tey + 5 — 205

—er — 205 +dy +dy + dy)

(—288a; + 180ay + 16b; — 565y + 12065 4 1600y 4+ 256 + 32¢0 4 T30 + 42¢4

Sy — Seg + 207 — 100s + 8dy + 3dy + 5dg + 8dy)

(10805 — 8by + T2bg + 96hy 4+ 1501 4 8¢9 4+ 43¢5 + 1004 + 305 — 14er — 6oy — 3ds

4+ 2ol = 4+ o=

Tds + 4dy) .



Solving EOM

The equation of motion is given by

V(As)

A’_”' . AJ.;‘ PoA, = ~
T P1A, + PoA: S F ()

where
Aw A + Cw Al +2 (D) + Dw) A,
—8y (20B1A], + 2Bw Al + CwA, + FwAl)
+83 (AV[-"A;;: + 2E11’Af; -+ FH"’A;) = -‘/r(Am)

where By — Bi|y—o = 6B1 and Dy — D1|y_o = 0D;. First we
have the coefficients with no ~-dependence py and p;, given by
wg — f(u)h':g f(u)

Po = and p; =

uwf?(u) f(u)

where @y = w/(271") and kg = q/(27T1"). For the coefficients
originating from the F'? term in the action of the gauge field, we

obtain

K(u)f(u)L"(u)
P(u) ’

B, =

w?® — f(u)K?(u)r?

uf(uw)K?(u)

Dy, = —K(u)P(u)L"(u)

where o = wRQ/(Q-rO) and Kk = qRQ/(Q?’O).



F(u)

1.0

=
0

-1.0




Singularity structure of the equation at the
horizon

Set &+ = 1 — wu, so that the singularity is at & = 0, then insert
the functional form A, = z”. We obtain the indicial equation:

_,1"32 + (—LjT) — ()




The hydrodynamic regime
Ap(u) = Ag(u) +vA1(u) = [1 —u] 7 (do(u) +~vd1(u))
where o0 = 1w /(471"). We now write

do1(uw) = ho1(u) + ogo1(u).

The full solution to linear order in ~ and o:

_ . 185
Ag(u) =[1 —u]™? (C‘ + o { D+ C (1 + ~ [ 4J + 2&] ) u})

where

o = 216aq + 144bs + 192by + 30¢y + bdes — 12¢4 + 65 —
60c7—12¢cg—12d1 —18dy+18d3—36e1—8f1+bg1—2g2— g3+ ho



If we call the boundary value of the field A, the on-shell action
is given by

S N*rg / d'k / Cdu [Raca, 1 0,0
Stotal = — = du | —A_y ’ ¥
total J_()?TQR'l (27T)4 0 2 k k

where LA, = 0 is the EOM, and ¥ is a boundary term. On the
on-shell action, the only surviving term is the boundary term, as we
expect from holography. This is given by

W — (B1 + vBw — '*;--Au.r)A’;cA_k + %(CW _
Ay )ARA g — VB AYA . + YEwAA" ) — yEwAA ) +

, F{yr
YEw (pliA}, + 2poAr) ALy — vy AL Ak

We only get contributions from By, Bw and Fy inside .
Remembering that o = 7T R*(1 — 265/16+), we obtain that the
conductivity is then corrected by a factor

1+ v (a—10)
where

o =aoa — hy — 3hs



Electric charge conductivity for AdS-Schw.
B.H. times the sphere

3
o= 0. (1 4+ %crm) :

where 0., = e* N2T/(167) and
C = C'?C‘l — 10 + CjCQ(VF)Q — C"CQ'TQ — C"C?”Tl .

The contribution of each set of operators are:

Cra = 44/3
Cozppy2 = 12797/9
Ceror2 = 2490/9
Ceap1 = —336/9

Gathering all these it gives C' = 14993 /9 ~ 1665.89. Thus

2 AT2 sy A

S N°T 3) 14993 .

O':E_i 1+€(.) A2 \
167 8 9

Examples:

for A\ = 100 the enhancement % % A3/2 is about 0.25

for A = 1000 the enhancement % #:% A3/ is about 0.0079
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Type 1IB supergravity describes the limits A — oo
and N, = oo, with 1 € A < N,.. The high derivative
corrections we consider above give finite A corrections
but still N, — oo. The modular form f%%(7,7) of Eq.(4)
holds for all values of the string coupling, and is given by

2m2
FOO (7 7) = 2¢(3)m3"% + —g 5 /2 + 811y x
|?H-| 2mimnt
E — e’ LK (2m|mnlm),  (14)

mz0,n=0 | |

where K 1s the modified Bessel function of second kind
which comes from non-perturbative D-instantons contri-
butions. Since in the present setup 71 = 0 and 7 = g; !,



f':ﬂ'-c'}('r, 7 ) becomes

) 3) \1/2 E—SHBNH‘A
o(arN,)32 [ & + - 4+ . (15
(4mNe) (,\3;’2 ASNZ  gq1/2N2/2 )7 (15)

where for small g., non-perturbative contributions re-
duce to the third term. Recall that the dilaton gets
only @(a’) corrections, thus the electrical conductivity
1s modified as

C 3 )\1/2 —8mAIN/A
o=00+ U“’(C()+ + = . (16)

8 A3/2 48&? Axl/ Qﬁrg*x 2
e’TN? . .
where oy = —==. At this point one may wonder

whether this result is comparable with those obtained
trom lattice QCD. Obviously, any statement in the con-
text of the present work has to be considered with sev-
eral caveats, coming from differences between QCD and
N = 4 SYM. Said that, it is possible to make contact
with lattice QCD at some extent. We must take into ac-
count that in lattice calculations N, = 3 and there are
other differences with respect to the large N, of N' = 4
SYM plasma. In a recent estimation for the electrical
conductivity [12] it was found o ~ 0.4e2T, above T,
of quenched lattice QCD. A more recent calculation [13]
shows that 1/3 2T < o < e?T from the vector current
correlation function for light valence quarks in the decon-
fined phase of quenched lattice QCD at T' = 1.45T,. It is



worth noting that from lattice computations at temper-
atures about 1.5 to 2 T,, the values of a, = g;_?, o /AT are
between 0.3 and 0.4, where these values were obtained by
matching the Debye mass screening in QCD and in N = 4
SYM theory at finite T'. Let us use the parametriza-
tion 0 = pe?T and extract p from our Eq.(16). We
naively set N, = 3, and evaluate the electrical conduc-
tivity for different values of A = 11.3, 15.08, 67 which
lead to ae = 0.3, 0.4, 0.5, thus Eq.(16) gives 1.64, 1.28
and 1.101, respectively, for p in the electrical conductiv-
ity. On the other hand, using these values of A and N, it
is only possible to discuss the zero frequency limit of the
photoemission rates, since they are well beyond the range
of validity of the approximations considered in this work.
Even though, one may tryv to see what happens for more
suitable values like A = 50 and N, = 100 or any of the A
values in figure 1, varying N, from, say 100.000 to 100.
In those cases, the large N, and finite N, curves coincide
for each A, therefore, being finite N, effects negligible in
the range where our approximations hold.



AdS/CFT: Thermalisation




Thanks!
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